Configuration filesΒΆ
Frequently we want to store configuration information of our network architecture
or other training parameters in configuration files. nuts-ml provides a
Config
dictionary to simplify this. The following example shows how to
create, access and update a configuration dictionary:
>>> from nutsml import Config >>> cfg = Config({'epochs':100, 'layer1':{'stride':2, 'filters':32}})>>> cfg.epochs 100>>> cfg.layer1.filters 32>>> cfg.layer1 {'stride':2, 'filters':32}>>> cfg.layer1.filters = 64 >>> cfg.layer1.filters 64>>> cfg.layer2 = Config({'stride':4, 'filters':16}) >>> cfg.layer2.stride 4
Configuration data can easily be saved and loaded to the file system in JSON or YAML format:
cfg = Config({'epochs':100, 'mode':'TRAIN'}) cfg.save('tests/data/config.yaml')cfg = Config().load('tests/data/config.json')